TEXAS INSTRUMENTS

Data sheet acquired from Harris Semiconductor SCHS103C – Revised July 2003

CMOS Synchronous Programmable 4-Bit Counters

- High-Voltage Types (20-Volt Rating)
- CD40160B Decade with Asynchronous Clear CD40161B – Binary with Asynchronous Clear
- CD40162B Decade with Synchronous Clear CD40163B — Binary with Synchronous
- CD40 103B Binary with Synchronous Clear

■ CD40160B, CD40161B, CD40162B, and CD40163B are 4-bit synchronous programmable counters. The CLEAR function of the CD40162B and CD40163B is synchronous and a low level at the CLEAR input sets all four outputs low on the next positive CLOCK edge. The CLEAR function of the CD40160B and CD40161B is asynchronous and a low level at the CLEAR input sets all four outputs low regardless of the state of the CLOCK, LOAD, or ENABLE inputs. A low level at the LOAD input disables the counter and causes the output to agree with the setup data after the next CLOCK pulse regardless of the conditions of the ENABLE inputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output (C_{OUT}) . Counting is enabled when both PE and TE inputs are high. The TE input is fed forward to enable C_{OUT} . This enabled output produces a positive output pulse with a

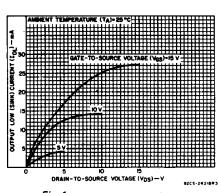
Features:

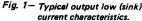
- Internal look-ahead for fast counting
- Carry output for cascading
- Synchronously programmable
- Clear asynchronous input (CD40160B, CD40161B)
- Clear synchronous input (CD40162B, CD40163B)
- Synchronous load control input
- Low-power TTL compatibility
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full package-temperaature range): 1 V at V_{DD} = 5 V
- $2 \text{ V at } \text{V}_{\text{DD}} = 10 \text{ V}$ 2.5 V at $\text{V}_{\text{DD}} = 15 \text{ V}$
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

duration approximately equal to the positive portion of the Q1 output. This positive overflow carry pulse can be used to enable successive cascaded stages. Logic transitions at the PE or TE inputs may occur when the clock is either high or low.

The CD40160B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix). The CD40161B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

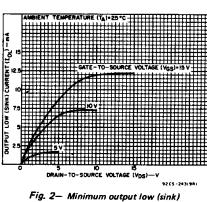
The CD40160B through CD40163B types are functionally equivalent to and pin-compatible with the TTL counter series 74LS160 through 74LS163 respectively.


14____01 PE IC TE 13 92 CLEAR LOAD 12 03 CLOCK PI 1 04 P2 P3 15 CARRY VDD - 16 V_{SS} • 8 92CS - 28628RI Functional Diagram


CD40160B, CD40161B.

CD40162B, CD40163B Types

Applications:


- Programmable binary and decade counting
- Counter control/timers
- Frequency dividing

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to Vnn +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$	
For $T_A = +100^{\circ}C$ to $+125^{\circ}C$ Derate Linearity a	t 12mW/ºC to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max	+265 ⁰ C

current characteristics.

÷

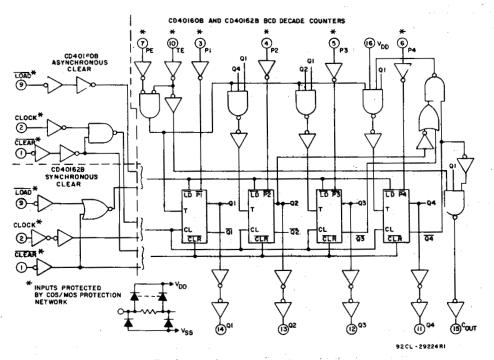


Fig. 3- Logic diagrams for CD40160B and CD40162B BCD decade counters.

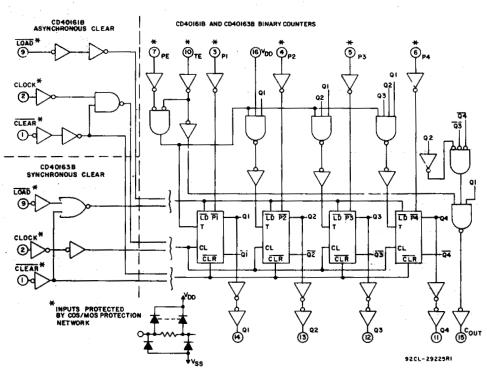
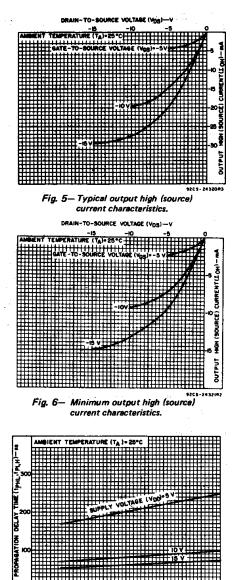
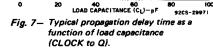
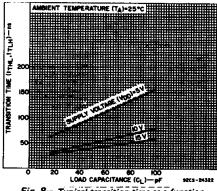
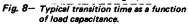



Fig. 4- Logic diagrams for CD40161B and CD40163B binary counters.

CHARACTERISTIC	v _{DD}	LIM	UNITS		
	(V)	MIN.	MAX.		
Supply Voltage Range (Full T _A = Full Package - Temperature Range)	_	3	18	v	
Setup Time: t _{SU} Data to Clock	5 10 15	240 90 60	·····	ns	
Load to Clock	5 10 15	240 90 60	÷ - *	ns	
PE or TE to Clock	5 10 15	340 140 100	-	ns	
Clear to Clock (CD40162B, CD40163B)	5 10 15	340 140 100	· _ ,	ns	
All Hold Times, t _H	5 10 15	0 0 0	- ·	ns	
Clear Removal Time, t _{rem} (CD40160B, CD40161B)	5 10 15	200 100 70		ns	
Clear Pulse Width, t _{WL} (CD40160B, CD40161B)	5 10 15	170 70 50	· _	ns	
Clock Input Frequency, f _{CL}	5 10 15	-	2 5.5 8	MHz	
Clock Pulse Width, t _W	5 10 15	170 70 50	-	ns	
Clock Rise or Fall Time, t _r CL or t _f CL	5 10 15	-	200 70 15	μs	


RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}C$, Except as Noted For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:




3

COMMERCIAL CMOS

HIGH VOLTAGE ICs

TRUTH TABLE

CLOCK	CLR	LOAD	PE	TE	OPERATION
5	1	0	×	x	PRESET
5	1	1	0	x	NC
5	1	1.	×	0	NC
7	1	1	1	1	COUNT
x	0	• x	x	x	RESET (CD40160B, CD40161B)
<u> </u>	.0	x	x	х	RESET (CD40162B, CD40163B)
	1	x	x	x	NC (CD40162B, CD40163B)

1 = HIGH LEVEL

0 = LOW LEVEL X = DON'T CARE

NC = NO CHANGE

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CON	DITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)				U N I T			
	Vo	VIN	VDD						+25		s
	(Ň)	(Ÿ)	(v)	55	-40	+85	+125	Min.	Тур.	Max.	
Quiescent	-	0,5	5	5	5	150	150	-	0.04	5	
Device		0,10	10	10	10	300	300	+	0.04	10	μA
Current, IDD Max.		0,15	15	20	20	600	600		0.04	20	Ϊ.
.00.000		0,20	20	100	100	3000	3000	-	0.08	100	Ι.
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	. 1	-	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	_	1
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-	
Output High ,	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	1	_	m/
(Source)	2.5	0,5	5	2	-1.8	-1.3	-1.15	-1.6	-3.2	· _	1
Current, I _{OH} Min.	9.5	0,10	10	1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	
	13.5	0,15	15	4.2	-4	-2.8	-2.4	-3.4	-6.8		1
Output Voltage:	-	0,5	5	0.05			-	0	0.05		
Low-Level,	-	0,10	10	0.05				-	. 0	0.05	.05
VOL Max.	-	0,15	15	0.05				-	0	0.05	ا ر
Output	-	0,5	5	4.95				4.95	5	-	
Voltage: High-Level,	_	0,10	10	9.95				9.95	10	-	1
VOH Min.	_	0,15	15	14.95				14.95	15		
Input Low	0.5,4.5	-	5			1.5		-	· ·	1.5	
Voltage	1,9	_	10	4		3				3	1
	1.5,13.5	1	15			4		-	— .	4	l.v.
Input High Voltage, V _{IH} Min.	0.5,4.5	-	5	· · ·		3.5		3.5	· _]		
	1,9		10	đ	-	7		7	-	
	1.5,13.5	-	15			11		11		-	
Input Current I _{IN} Max.	1	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μ٨

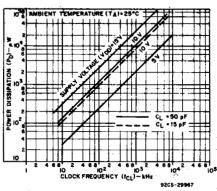


Fig. 9— Typical power dissipation as a function of CLOCK frequency.

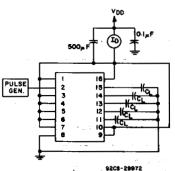


Fig. 10- Dynamic power dissipation test circuit.

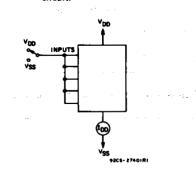
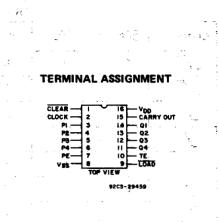
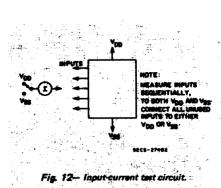
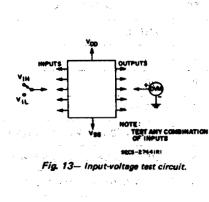
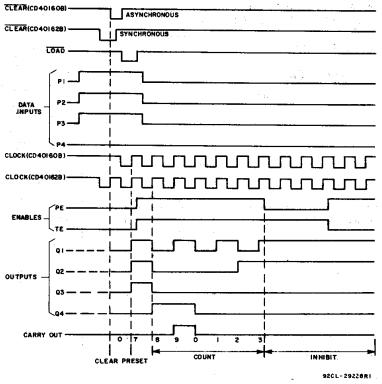
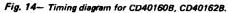
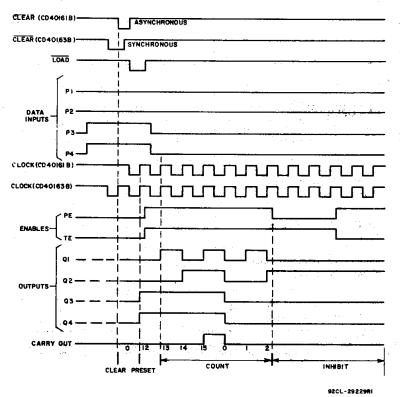





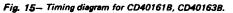
Fig. 11- Quiescent-device-current test circuit.

 The second se Second sec


15.1


CHARACTERISTIC	TEST CONDITIONS	LIMITS ALL TYPES*			UNITS	
	V _{DD} (V)	Min.	Typ. Max.			
CLOCK OPERATION	·		••••••		<u>.</u>	
Propagation Delay Time, tpHL,tpLH	5	-	200	400	T	
Clock to Q		-	80	160	ns	
	15		60	120	1	
. magan 6/1/ /	5		225	450		
Clock to COUT	10	1 <u>-</u>	95	190	ns	
	- 15	· _	70	140	113	
	5	<u> </u>	l			
TE to COUT	10	· -	125	250		
	15		55 40	110	ns	
				80		
Minimum Setup Time, tSU	5	-	120	240		
Data to Clock	10	· _	45	90	ns	
· · · · · · · · · · · · · · · · · · ·	15		30	60		
	5	_	120	240		
Load to Clock	10		45	90	ns	
	15	_	30	60	113	
	5	<u> </u>			<u> </u>	
PE to TE to Clock		- 1	170	340		
FE to FE to Clock	10	I	70	140	ns	
	15		50	100		
	5	-	-	0		
Minimum Hold Time, tH	10		- 1	o	ns	
	15	_	- 1	Ō		
to the total and the second		(<u>-</u>	100	200		
Transition Time, tTHL, TLH	10		50			
THL/ILH	15	-	40	100	ns	
				80	L	
	5	-	85	170	ľ	
Minimum Clock Pulse Width, t _W	10	-	35	70	пs	
	15		25	50		
	5	2	3	_		
Maximum Clock Frequency, f _{CL}	10	5.5	8.5	<u> </u>	MHz	
52	15	8	12	-		
	5	200				
Maximum Clock Rise or Fall Time, [†]	10	70	_	-		
t _r CL, t _{fCL}	15	15	· · -·	-	μs	
	15	15				
			050			
Propagation Delay Time, tPHL	5		250	500		
(CD40160B, CD40161B)	10	,	110	220	ns	
Clear to Q		`	- 80	160		
Minimum Setup Time, tsu	5	-	170	340		
(CD40162B, CD40163B)		. .	70	140	ns	
Clear to Clock	15	-	50	100		
Minimum Hold Time, t _H	5	_		0		
(CD40162B, CD40163B)	10	· · · ·		. 0	ns	
Clear to Clock	15		·_	0	113	
Minimum Clear Removal Time, trem	5		100	200		
(CD40160B, CD40161B)	10	· -	50	100	ns	
	15	·	35	70		
Minimum Clean Pulse Minimum	5		85	170		
Minimum Clear Pulse Width, twL (CD40160B, CD40161B)	10	·	35	70	ns	


DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25° C; Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω


* Except as noted.
* Except as noted.
* If more than one unit is cascaded in the parallel clocked application, trCL should be made less than or equal to the sum of the fixed propagation delay at 50 pF and the transition time of the carry output driving stage for the estimated capacitive food.

a Constant States and a second second

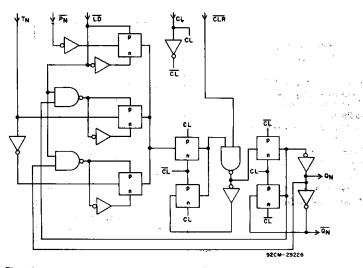
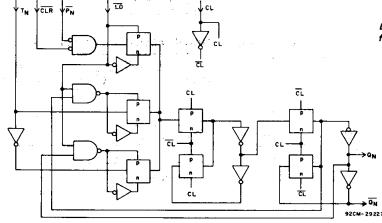



Fig. 16- Detail of flip-flops of CD40160B and CD40161B (asynchronous clear).

80 80-88 4-10 ____ 106 - 114 ____ (2.693 - 2.895) 92CM-29968

Dimensions and pad layout for CD40160BH. Dimensions and pad layout for CD40161BH, CD40162BH, and CD40163BH are identical.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

92CM- 29970

COMMERCIAL CMOS HIGH VOLTAGE ICS

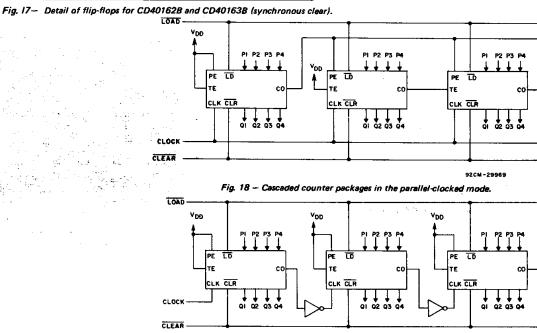
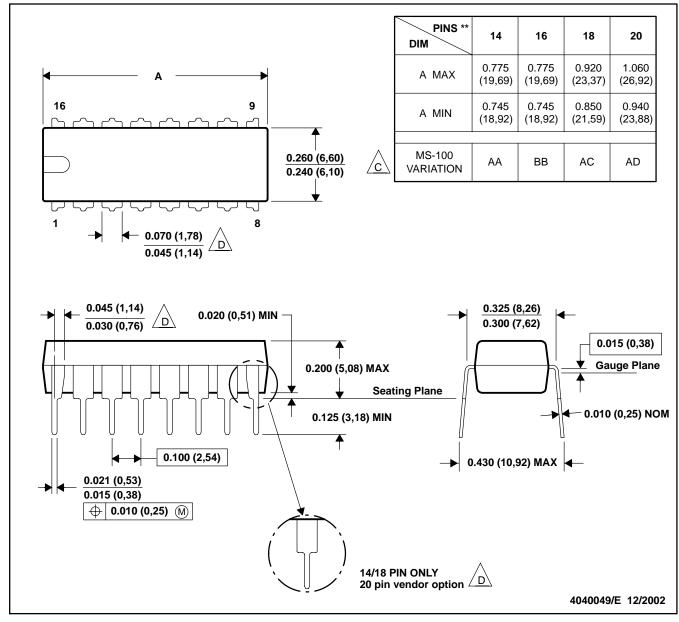


Fig. 19 - Cascaded counter packages in the ripple-clocked mode.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

MPDI002C - JANUARY 1995 - REVISED DECEMBER 20002

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

/д.

B. This drawing is subject to change without notice.

/C Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

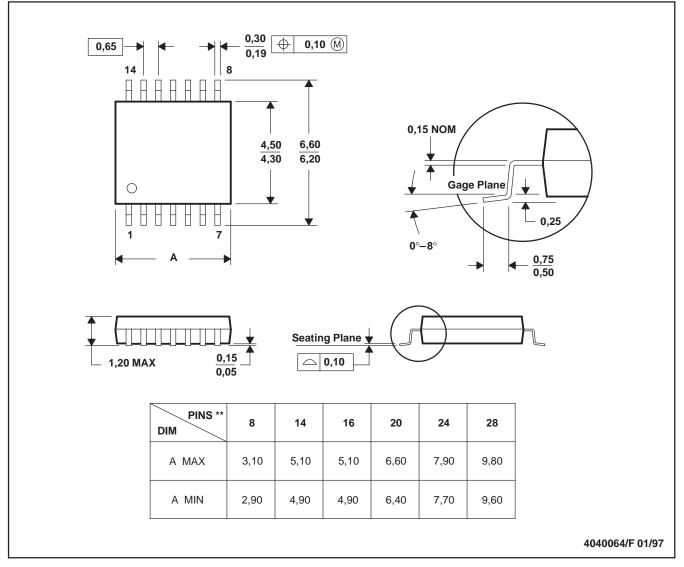
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated